If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-40=180
We move all terms to the left:
X^2+20X-40-(180)=0
We add all the numbers together, and all the variables
X^2+20X-220=0
a = 1; b = 20; c = -220;
Δ = b2-4ac
Δ = 202-4·1·(-220)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-16\sqrt{5}}{2*1}=\frac{-20-16\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+16\sqrt{5}}{2*1}=\frac{-20+16\sqrt{5}}{2} $
| 3x+268=13x-12 | | 15.4x+x=180 | | 2c-27=6c-55 | | 3m+7=7 | | 558*40.44^n=480*45.61^n | | X(-x+40)-200=0 | | .5k+6=4k−8 | | 1/2k+6=4k−8 | | 86+2n=518 | | -r=26 | | -13.6m-2.18=-14m-8.38 | | 4v=5/12 | | 14-10w=-9w | | 11a+40=15a+20 | | 7p+p=1600 | | -((x×x)-40x+200)=0 | | -19-6u=-12-5u | | x^2+(x+5)(x+5)=73 | | 17.3*15.23=x | | -25+k=-40 | | 3x^2-2x=372 | | -20=z/4+7 | | -20z-18=6-16z+20 | | 3x^-1=-(x-4) | | -25+k=40 | | 1.2y–0.5–4=5 | | 14+a=92 | | 1,2y–0,5–4=5 | | 3x^2-2x-372=0 | | (18-2x)(22-2x)(x)=425 | | 58=m+13 | | 6(x+4)=5x+1 |